教案不仅是教学的蓝图,还应反映出实际教学中可能遇到的问题和解决方案,教案的编写能力直接影响课堂教学的效果与质量,以下是汇报范文网小编精心为您推荐的小数乘小数优秀教案6篇,供大家参考。
小数乘小数优秀教案篇1
设计说明
本节课是第一单元的起始课,是在学生学习了分数的基础上进行教学的,所以要特别重视学生在新知的学习中运用已有知识经验,使学生经历独立思考、自主探究的过程,并将已有知识经验迁移到新知的学习中。因此,本节课在教学设计上有以下特点:
1.注重学生已有的知识经验。
在本节课的教学过程中,教师利用元、角、分和米、分米、厘米的现实情境,启发学生从多个角度通过解释元、米是什么意思,认识到与,与是同一个数的不同形式,为探究小数的意义奠定了基础。
2.给学生创设自主探究的空间。
本节课创设了让学生借助米尺探究小数意义的活动,并让学生通过独立思考、合作交流,认识一位小数表示十分之几,两位小数表示百分之几充分调动学生学习的积极性。课堂上,学生通过观察、思考,认识一位小数表示十分之几;通过猜测、验证,认识两位小数表示百分之几;通过思考、交流,发现三位小数表示千分之几直至总结概括出小数的意义,学生在自主探究与合作中经历了知识的形成过程,同时在这个过程中锻炼和提高了各方面的能力。
课前准备
教师准备:ppt课件,正方形纸
学生准备:正方形纸,水彩笔直尺
注:本书“上课解决方案”中的“备教学目标”“备重点难点”见前面的“备课解决方案”。
教学过程
⊙创设情境,导入新课
1.出示一些商品价格标签,让学生说说商品的单价。(课件出示商品的价格标签)
2.谈话引入。
同学们都能正确地读出这些商品的标价,这是因为我们在三年级时学习了“元、角、分和小数”,一些商品的标价用元作单位时,要用小数表示。那除了商品的标价可以用小数表示外,你们还在哪些地方见过小数?
预设生1:测量身高时,我的.身高是米。
生2:跳远比赛时,我的成绩是米。
3.过渡:生活中有很多小数,教材中也举了一些例子,请同学们翻到教材2页,自己读一读。这些小数到底表示什么呢?我们一起来学习一下。
设计意图:从学生熟悉的商品的价格引入小数,既激发了学生的学习兴趣,又调动了学生学习的积极性,同时也为学习新知做好铺垫。
⊙动手操作,自主探究
活动:探究小数的意义。
1.做一做,说一说。
(1)课件出示教材附页1中的图片,根据所给的图片做一做,说一说,元和米分别是什么意思?
(2)全班交流:元是1元1角1分,1角是1元的,也可以写成元,1分是1元的,也可以写成元。
1.11米是1米1分米1厘米,1分米是1米的,也可以写成米,1厘米是1米的,也可以写成米。
2.画一画,涂一涂。
(1)(出示一张正方形纸)引导学生操作:用一张正方形纸表示“1”,把这张正方形纸平均分成10份,将其中的1份涂色,并想一想涂色部分用分数怎样表示。
(学生展示操作成果并汇报)
师:我们把这张正方形纸看成“1”,平均分成10份,涂色部分用分数表示是,用小数表示是。表示把“1”平均分成10份,取其中的1份。比较一下“1”和“”的大小,“1”里面有几个“”?
预设生:1比大,1里面有10个。
(2)引导学生讨论:如果把其中的3份涂上颜色,用分数怎样表示?小数呢?
①学生先独立思考,然后独立完成。
②汇报交流。
小数乘小数优秀教案篇2
教学内容:p27、28例8、例9、课文,p30练习五第1、2题。
教学目的:
1、通过求商,使学生感受到循环小数的特点,从而理解循环小数的概念,了解循环小数的简便记法。能用“四舍五入”法求循环小数的近似值,能用循环小数表示除法的商。
2、理解有限小数,无限小数的意义,扩展数的范围。
3、培养学生抽象概括能力,及敢于质疑和独立思考的习惯。
教学重点:掌握循环小数、无限小数、有限小数的意义。
教学难点:掌握循环小数的简便记法。
教学过程:
一、自主探索,获取新知
1、师谈活引入新课:
今天这节课老师给你们讲个故事:从前有座山,山里有个庙,庙里有个老和尚,正在给小和尚讲故事说:从前有座山,山里有个庙,庙里有个老和尚,正在给小和尚讲故事说:……这个故事讲得完吗?为什么讲不完呢?(板书:重复出现)
今天我们要学习的知识和这个故事有相同的地方,首先我们一起到运动场上去看一看吧。从图中你知道了什么?
全班齐笔算王鹏平均每秒跑了多少米?(指名一生板演)。
2、初步感受循环小数的特点。
有些同学算着算着就停下了,发现了什么问题吗?(组织学生小组内交流)
可能发现:1、余数总是“25”。2、继续除下去,永远也除不完。3、商的小数部分总是重复出现“3”。
师:你们怎么能肯定会永远除不完,商的小数部分总是重复出现“3”?让学生充分发表意见,明确余数一旦重复出现,商也就重复出现。
师:那么商如何表示呢?你为什么使用省略号?省略号在这里表示什么意思?(师板书)
3、总结概括循环小数的意义
其他除法算式会不会出现这种情况呢?请同学们算一算:28÷18 78.6÷11
先计算,再说一说这些商的特点。如果继续除下去,商会怎样样?能除尽吗?(请生板演计算结果)
观察例8、例9的三道题,你们发现他们的异同吗?(不同点:一个是小数“3”的循环,另一个是小数“4”和“5”的循环。相同点:
学生讨论后,指名汇报,教师抓住学生回答板书:
(1)小数部分,位数无限(或者除不尽)。
(2)有的是一个数字不断重复出现,有的是两个……。教师小结循环数的意义,(板书课题)。
4、巩固练习:下列哪些是循环小数?并说一说理由。
0.999… 52.52525… 4.1677… 3.212121… 3.1415926…
学生评议。
5、介绍简便记法
除了用省略号来表示循环小数外,还可以用简便记法来表示。如5.333…还可以写作5.3,7.14545还可以写作7.145,请学生把前面判断题中的循环小数用简便记法写一写。(请学生板演),同座互相检查,大家交流订正,在这个过程中,鼓励学生质疑。
(52.52525…可能出现问题52.5252.52552.52,师生共同辨析)
6、看书p27-28第一自然段,及了解“你知道吗?”
7、理解有限小数和无限小数的意义。
师:想一想,两个数如果不能得到整数商,所得的商会有哪些情况?请举例说明?
学生小组讨论,汇报。
师两个数相除,如果不能得到整数商会有两种情况:1、商的小数部分位数是有限的,叫做有限小数;2、商的小数部分倍数是无限的,叫作无限小数。判断前面练习题中的小数哪些是有限小数?哪些是无限小数。
循环小数是有限小数,还是无限小数?为什么?
学生有可能会质疑,结果会不会是无限不循环小数,教师可根据课堂或本班学生实际和学生共同分析。
二、小结:这节课我们学习了哪些知识?能用自己的话说说你是怎样理解这些概念的吗?
三、巩固练习
用计算器算出商后,说出商是什么小数,依据是什么?是循环小数的要求用简便方法写出来。
19÷111.08÷3.313.25÷10.6
四、作业:p30第1、2题。
课后小记:
学生在预习后提出如下一些需要思考的问题:
1、这道题能除尽吗?
2、为什么它除不尽?为
3、计算结果该如何表示?
4、什么是循环小数?
带着这些疑问,本课的教学顺利地推进。这些问题也均在教学中得到了解决。
但在练习中出现了以下几种常见错误:
1、在竖式中在第一个循环节上也打了循环节的圆点。
2、在横式上照抄竖式结果时,虽然在第一个循环节上打了圆点,可却写了两个循环节。
3、在计算竖式时几个数字还未重复两次出现时,学生就经过推理判断出它是循环小数而不再继续往下除了。如:2。01212……学生除到2。0121时就发现小数位数第四位与第二位的数字相同,余数也相同而不再继续往下除了。
针对上述前两个错误,以后再教板书时我应强调格式与写法。特别是p28页下方的‘你知道吗”其中有关循环节的介绍及“写循环小数时,可以只写第一个循环节,并在这个循环节的首位和末位上面各记一个圆点”应让所有学生掌握。
小数乘小数优秀教案篇3
教学内容
教科书第101页,练习十九第6题及你知道吗
教学目标
使学生理解循环小数、有限小数、无限小数的概念,能用循环小数或循环小数的近似值表示除法中的商。知道有限小数和无限小数的区别。使学生受到辩证唯物主义启蒙教育。
教学构想
通过计算让学生做除法,通过实际计算,发现这些除法无论除到小数点后面多少位都除不尽。根据学生计算出的除法竖式,引导学生发现余数商的特点引出循环小数的概念。这是小数概念的又一次内涵扩展,要让学生认识到循环小数是一种无限小数。
教学过程
一、复习:
看谁算得快。
第一组:1.69÷26 58.3÷11
第二组:1÷3 58.6÷11
两个数相除时,会出现两种情况,第一组题都可以除尽,第二组都除不尽。
二、新知学习
1、继续通过计算探索
5÷3=1.666……
14÷37=0.378378……
25÷22=1.13636……
2、讨论:等号后面的商该怎样写呢合适?指导书写。
3、引出“循环小数”的概念
明白:一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的'小数叫做循环小数。
4、观察,进一步理解;无限小数、有限小数。
5、学习简便书写的方法,认识“循环节”
0.1818……=
89.5603420342……=
1.7290290……=
46.142857142857……=
6、让学生自主阅读,课本101页的“你知道吗?”交流阅读后的认识
三、巩固练习
1、下列哪些数是无限小数,哪些数是有限小数?哪些数是循环小数?
0.24242424,8.35489621……,5.737373……,6.21363636……,21.3658
2、把下列循环小数用简便的方法书写出来
5.252525……=
7.1478478……=
9.363363……=
3、练习十九 第6题。
小数乘小数优秀教案篇4
教学目标
1知识与技能:
?1】使学生理解循环小数、有限小数、无限小数的意义。
?2】掌握循环小数的两种表示方法。
2过程与方法:
经历循环小数的认识过程,体验探究发现的学习方法。
3情感、态度与价值观:
让学生感受数学的美与乐趣,激发探究的欲望,初步渗透集合思想。
教学重难点
1 教学重点:
理解循环小数、有限小数、无限小数的'意义,掌握循环小数的简便记法。
2 教学难点:
用循环小数表示除法算式的商。
教学工具
多媒体设备
教学过程
教学过程设计
1 引入
故事:从前有座山,山里有座庙,庙里有个老和尚给小和尚讲故事,讲什么呢?从前有座山……
引出课题——循环小数
2 新知探究
(一)创设情境。
1.课件出示:
(1)学生描述场景信息,根据信息,你能列出什么算式呢?400÷75
(2)学生独立计算,指名板演。引导学生思考并回答:
①让学生通过实际计算,发现这道题无论除到小数点后面多少位,都除不尽。通过竖式计算,你发现了什么问题?(除不尽)
②这道题商的小数部分和余数有什么规律和特点?(商的小数部分不断的重复出现3,而余数重复不断的出现25)
③如果我们不断地除下去,它的商是多少?比如第5位是多少?第20位商是多少?第100位商是多少?(不管是哪一位,只要余数重复出现25,商就会重复出现3。)这样的除法算出的商应该表示为:400÷75=5.333……
总结特点:
(1)余数重复出现25。
(2)商的小数部分重复出现“3”。
(3)永远也除不完,商是无限的。
2、先计算,再说一说这些商的特点。
28÷18= 78.6÷11=
(1)先让学生独立列竖式计算。
(2)观察这道题,有什么相同点?(这两题的相同点是总也除不尽。)
这两道题的不同点是什么?(前一道题商中是一个数字“5”不断重复出现,而后一道题,商中二个数字”6 3”在依次不断重复出现。)
观察总结引出概念:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。像上面的5.333 ooo和7.14545 ooo都是循环小数。
3.自学内容:
一个循环小数的小数部分,依次重复出现的数字,叫做循环小数的循环节。例如:
5.333 ooo的循环节是3。
7.14545 ooo的循环节是45。
6.9258258 ooo的循环节是258。
写循环小数时,可以只写第一个循环节,并在这个循环节的首位和末位数字上面各记一个圆点。例如:
5.333 …写作5.3。
6.9258258…写作6.9258。
小数部分的位数是有限的小数,叫做有限小数。例如,0.937。
小数部分的位数是无限的小数,叫做无限小数。例如,0.2142857就是一个无限小数。
3 学以致用
(一)基础练习
1. 判断下列各数哪些是循环小数?哪些不是?
3.4666… (是) 2.35435 (不是)
1.4555 (不是) 0.24382438… (是)
2.58080 (不是) 0.44222… (是)
8.4747… (是)
2.填空:
64.2454545…
2.1313…
7.87
5.901436…
0.666…
9.3737
有限小数:7.87, 9.3737
无限小数:64.2454545…, 2.1313…, 5.901436…, 0.666…
循环小数:64.2454545…, 2.1313…0.666…
3.下列小数的循环节是什么?
3.4666… ( 6 )
0.2382438… (2438)
8.4747… ( 47 )
0.44222… ( 2 )
4. 用简便形式写出下面的循环小数。
5.写出下列循环小数的近似值:(保留三位小数)
6.判断。
(1)一个小数从小数部分的某一位起,一个数字或几个数字重复出现,这样的小数叫循环小数。( √ )
(2)9.666是循环小数。( × )
(3)循环小数是无限小数。 ( √ )
(4)3232.32是有限小数,也是循环小数。 ( × )
(二)综合提升练习
7.用“四舍五入法”写出下表中各循环小数的近似数
8、比较下列小数的大小
9.如果用a 、b、 c 表示不同的三个数字,如:a.bbcbbcoooooo可以简写成什么数?这个小数的小数部分第一百位是什么?
100÷3=33oooooo1
所以这个小数的小数部分第一百位是b。
课后小结
一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数。
小数部分依次不断重复的一个或几个数字,叫做这个循环小数的循环节。
板书
一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数。
小数部分依次不断重复的一个或几个数字,叫做这个循环小数的循环节。
小数乘小数优秀教案篇5
【教学内容】
人教版教材第32~33页例1和“做一做”,第36页练习九第1~3题。
【教学目标】
1.使学生知道小数是在实际生活中产生的,并有着广泛的应用,认识整数、分数与小数之间的内在联系。
2.理解小数的意义,掌握小数的计数单位及相邻两个单位间的进率。体会到小数与我们的日常生活是密切联系的。
3、培养学生探究发现、类推迁移的数学学习能力。
【教学重点】
在学生初步认识分数和小数的基础上,进一步理解小数的意义。
【教学难点】
理解小数与分数之间的联系,掌握小数的计数单位及单位间的进率。
【教学准备】
米尺、多媒体课件、立方体教具。
【教学过程】
一、【课前铺垫、创设情景】
教师通过展示自己的个人资料,既满足了学生想进一步地了解老师的好奇心,又达到了复习铺垫的学习目标。通过学生自主创造小数的环节,极大地调动了学生对小数世界的求知欲望。
二、【新课讲授】
1、认识一位小数
今天的学习,我们借助一样学具~米尺,大家认识它吗?现在我们把它搬到大屏幕上!
(出示米尺课件)学生仔细观察,回答问题。
教学例1。
教师提问:一起来数数,把1米平均分成了多少份?
学生一起数,得出结论(10份)。
提问:因为1米=10分米,所以这一份是多长?
学生观察后回答:1分米
小结:我们把1米平均分成了10份,每一份是1分米。
提问:1分米是1米的几分之几?()
(1)如果用“米”做单位,每一份用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.1米。)
教师强调0.1米表示的意思:(0.1米表示把1米平均分成10份,取其中的1份就是0.1米)
想一想:0.1米的长度和米的长度它们之间是一种什么关系?(相等的关系)
由此得出:米=0.1米
(2)这样的3份是几分米?(这样的3份是3分米。)用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.3米。)
提问:谁能说说0.3米表示什么意思?
同样,可以得出:米=0.3米
(3)这样的7份又是多长呢?(这样的7份是7分米。)用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.7米。)
提问:谁能再来解释一下0.7米表示什么意思?
同理,可以写成:米=0.7米
(4)进一步强化训练:这样的9份就是(9分米),写成分数是(米)、写成小数是(0.9米)(学生口答完成)
教师旨在引导,学生观察发现
师:课件显示我们刚才得到的一组分数,观察这些分数的分母,你发现它们有什么共同特点?(分母都是10)
师:分母都是10的,也就是十分之几的数,我们用几位小数来表示?(一位小数)
师:结合我们得出的这几组等式,谁能把你刚才的发现再来完整地说一说?
学生通过观察,自行总结发现。(分母是10的分数,可以用一位小数来表示)点击出示第一个发现!你的发现太棒了!
出示课件(我们一起来回顾一下,这一段是几米?)(0.3米)
一起数数0.3米是由几个米组成的?(3个)
提问:那0.3里面有()个0.1?
这一段又是多长?(0.7米)
再来数数几个米组成0.7米?(7个)
提问:那0.7里面有()个0.1?
进一步强化训练:0.9里面有()个0.1?(9个)
请大家想一想:9个0.1如果再加上1个0.1是多少呢?(是1)
提问:1里面有()个?(10个)
也就是说:1里面有10个0.1
提问:谁能告诉我1.2里面有()个0.1?(12个)
师:你是怎么想的?
教师小结:像0.3、0.7、0.9、1.2……都是一位小数,一位小数表示里面有()个,我们就说,是一位小数的计数单位,写作:0.1
师:这句话太重要了,谁能把它再说一遍!
点击出示第二个发现!(一位小数的计数单位是十分之一,写作:0.1)
反馈小训练:谁能告诉老师:0.8的计数单位是什么?它有几个这样的计数单位?
2、认识两位小数
小小的米尺,大大的学问。
师:同学们,猜一猜,如果老师再想继续分的话,会把1米平均分成多少份呢?(100份)现在的每一份是几厘米?(每一份是1厘米)
1厘米是1米的几分之几米呢?(米)
出示课件:同学们请看,老师把之前分得的1分米,通过放大,再次平均分成10份,这时,就把1米平均分成了100份。
小结:这样的一份就是1厘米,用分数表示是米,写成小数是(0.01米)
提问:这样的4份和8份用分数和小数表示,分别又是多少米呢?
请大家翻开课本32面,把你的答案写在书上。
教师根据学生的回答,课件逐一出示答案。
师:根据你们的回答,我们可以得到这样几组等式(显示等式课件)
师:请大家仔细观察,这次写出的都是几位小数?(两位小数)
师:表示这些小数的分数,它们的分母又有什么共同特点?(分母都是100)
师:那你发现了什么?
学生通过观察,自行总结发现。(分母是100的分数,可以用两位小数来表示)点击出示第一个发现!你的发现真了不起!
师:分母是100的分数,可以写成两位小数。两位小数表示百分之几的数,百分之几也可以看作是几个百分之一,这里的就是两位小数的计数单位,写作:0.01
师:谁能把这句非常重要的话像老师这样说一说!
点击出示第二个发现!(两位小数的计数单位是百分之一,写作:0.01)
反馈小训练:想一想0.25的计数单位是什么?它有几个这样的计数单位?并说说你是怎么想的?(对学生的回答及时作出评价)
3、认识三位小数
师:刚才我们认识了一位小数、两位小数的意义和计数单位,那三位小数呢?下面请同学们按照老师给出的自学提示和自学要求,有步骤地进行自学探究,并完成手中的活动报告单。提问:根据前面的学习规律,说说1毫米、6毫米、13毫米用分数和小数该怎样表示?
学生分组讨论交流,小组选派代表发言。
发言总结:1毫米用分数表示是米,写成小数是0.001米;6毫米用分数表示是米,写成小数是0.006米。13毫米用分数表示是13/1000米,写成小数是0.013米
提问:经过你们的自学探究,谁愿意把你们小组的发现和大家分享一下?
学生总结发现:
分母是1000的分数,可以用三位小数来表示。
三位小数的计数单位是千分之一,写作:0.001
点击出示发现!你们个个都是自学小能手!老师为你们点赞!
4、概括:小数的意义
师:通过刚才的学习,我们知道了:
分母是10的分数,可以用一位小数来表示
分母是100的分数,可以用两位小数来表示
分母是1000的分数,可以用三位小数来表示
谁能尝试着把它们用一句话来概括一下?(教师可适当提示一位小数、两位小数、三位小数都属于小数范畴)
学生小结:分母是10、100、1000的分数,可以用小数来表示。(师板书)
师:依此类推,分母是10000的分数,可以用(四)位小数来表示、分母是100000的分数,可以用(五)位小数来表示……说的完吗?(说不完)就可以用省略号来表示……
这就是小数的意义,请大家齐读一遍。
学生齐读意义,教师板书课题~小数的意义
师:同学们可真棒!自己总结出了小数的意义!
5、总结:小数的计数单位
师:通过刚才的学习,我们也知道了:
一位小数的计数单位是十分之一,写作:0.1
两位小数的计数单位是百分之一,写作:0.01
三位小数的计数单位是千分之一,写作:0.001
师:谁能尝试着把它们用一句话来总结一下?
学生小结:小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……(师板书)
师:你是个非常善于总结的孩子!这就是小数的计数单位,请大家齐读一遍。
师:这里的省略号表示什么意思?(说不完)看来同学们理解了!
6、小数相邻单位间的进率
(过渡)学习的过程就是不断地克服困难,战胜自我的.过程。
师:同学们请看大屏幕,老师带来了一个用整数1来表示的正方体,我真诚的邀请同学们一起来感受这个正方体变形的过程,你们愿意吗?
教师出示正方体变形课件,逐步引导学生观察分析:
1里面()个0.1
0.1里面()个0.01
0.01里面有()个0.001
提问:括号里能填几,你是怎么想的,先独立思考,再小组讨论,汇报结果。
学生讨论发言。
小结:通过演示操作,交流讨论发现:1里面有10个0.1;0.1里面有10个0.01;也就是0.1是0.01的10倍,我们就说0.1和0.01之间的进率是10,0.01里面有10个0.001,也就可以说0.01和0.001之间的进率是10。
师:什么情况下它们的计数单位之间的进率是10呢?举例说说你是怎么想的?
学生小结:小数和整数一样,每相邻两个计数单位之间的进率是10。(师板书)
请大家齐读一遍。
三、【巩固提升、练习反馈】
1.完成教材第33页“做一做”。(可以一题两问)
2.判断:争当合格小裁判(说出判断理由)
四、【课堂小结】
提问:同学们,这节课学的高兴吗?谁能向同学们分享一下你这节课的收获?
小结:是的,很多数学知识都是相互联系、相互贯通的。今天我们主要研究分母是10、100、1000……的这类特殊分数与小数的转化,在以后的学习中,我们还会继续探究由特殊到一般研究和转化。只要你善于思考和发现,你就能从中得到无穷无尽的乐趣!最后,老师把自己最喜欢的一句人生格言送给大家,希望与你们共勉!(天才是百分之一的灵感加上百分之九十九的汗水)
五、拓展延伸
板书设计
小数的意义:分母是10、100、1000……的分数,可以用小数来表示。
小数的计数单位:小数的计数单位是十分之一、百分之一、千分之一……分别写作:0.1、0.01、0.001……
小数的进率:每相邻两个计数单位之间的进率是10。
小数乘小数优秀教案篇6
设计说明
?数学课程标准》中指出:数学思想蕴涵在数学知识形成、发展和应用的过程中,是数学知识和方法在更高层次上的抽象与概括,学生在积极参与教学活动的过程中,通过独立思考、合作交流,逐步感悟数学思想。针对本节课的教学内容和知识特点,我设计了以知识为明线,以数学思想为暗线的教学过程:
1.在分类中感知小数。
分类是一种重要的数学思想,学习数学的过程中经常会遇到分类问题。上课伊始,通过播放教师测量情境,让学生感知小数产生的必要性。然后我出示一组小数,让学生根据自己的认知给这些小数分类,充分调动学生的已有认知,并检测学生对小数的认知程度。
2.在数形结合中自主探究小数。
?数学课程标准》中指出:自主探究是获取数学知识的重要学习方式。因此,在教学中引导学生借助数形结合思想自主探究小数的意义,在汇报交流中逐渐明晰小数与十进分数之间的`关系。这样设计教学,使学生真正成为课堂学习的主人。
3.找准起点,促进知识的迁移。
小数的意义借助分数来掌握,必须经历感悟十进分数与小数之间联系的过程。教学中要引导学生具体分析一位小数的意义,然后运用迁移的方法去理解两位、三位小数的意义,发展学生的类比、推理能力,感悟知识间的内在联系,感受迁移在数学学习中的价值。
课前准备
教师准备多媒体课件
学生准备米尺
教学过程
⊙在分类中感知小数
1.在分类中感知小数。
师:谁能说一说你们都收集到了哪些生活中常用的小数?(让学生自由说一说)
老师也收集了一些小数,你能把这些小数分一分类吗?(学生在分类的过程中理解一位小数、两位小数……)
2.导入新课。
师:展示学生分类的情况,这节课就让我们根据同学们这种分类来探究小数的意义。(揭示课题)
设计意图:创设贴近学生生活实际的生活情境,引出学习对象,激发学生的学习兴趣;给生活中的小数分类,激活了学生的生活经验,促进学生知识的迁移。
⊙探究新知
1.了解小数的产生。
(1)引导学生动手量课桌、黑板等物体的边长。(组织学生动手测量,并记录测量结果,然后分组汇报)
(2)刚才同学们都很认真地进行了测量。如果在记录测量结果时,要求用“米”作单位,不够1米怎么办?
(学生可能感到很困惑,有的学生可能会想到用分数表示)
(3)教师小结:在测量和计算时,往往得不到整数的结果,这时常用小数来表示。因为日常生活和生产的需要产生了小数。
2.教学小数的意义。
(1)认识一位小数。
①课件出示米尺图。
把1米平均分成10份,指一指每一份所对应的位置。
②根据分数的意义,1分米=米,米也可以用0.1米表示。(板书:1分米米0.1米)
③启发学生:(指3分米处)把1米平均分成10份,3份是多少分米?用分数表示是多少米?用小数表示是多少米?(引导学生说出:3分米米0.3米)
④(指7分米处)你们能说一说这里用整数、分数、小数分别怎么表示吗?(引导学生说出:7分米米
0.7米)
⑤从前面的学习过程中,你发现分数与小数的联系了吗?(引导学生进行小组讨论、交流,然后指名汇报)
预设
生1:我发现分母是10的分数,可以写成一位小数的形式。
生2:我发现一位小数表示的是十分之几。
⑥教师小结:分母是10的分数,可以写成一位小数。一位小数表示十分之几。
(2)认识两位小数。
①你能猜一猜两位小数与什么样的分数有关系吗?[课件出示:把1米平均分成100份,每份长()厘米,用分数表示是()米,用小数表示是()米;这样的3份是()厘米,用分数表示是()米,用小数表示是()米;这样的7份是()厘米,用分数表示是()米,用小数表示是()米]
②引导学生观察米尺,结合教师出示的习题进行分组讨论。(指名回答,并板书:1厘米米0.01米3厘米米0.03米7厘米米0.07米)
(3)认识三位小数。
师:把1米平均分成1000份,每份长多少?
小数乘小数优秀教案6篇相关文章:
★ 海乘工作总结8篇
★ 小班优秀教案6篇