撰写教案时,教师们应设置合理的学习目标和任务,教案中设定的反馈机制能够及时了解学生的学习状态,为后续教学提供依据,汇报范文网小编今天就为您带来了初中整式教案6篇,相信一定会对你有所帮助。

初中整式教案篇1
整式乘除与因式分解
一.回顾知识点
1、主要知识回顾:
幂的运算性质:
aman=am+n(m、n为正整数)
同底数幂相乘,底数不变,指数相加.
=amn(m、n为正整数)
幂的乘方,底数不变,指数相乘.
(n为正整数)
积的乘方等于各因式乘方的积.
=am-n(a≠0,m、n都是正整数,且m>n)
同底数幂相除,底数不变,指数相减.
零指数幂的概念:
a0=1(a≠0)
任何一个不等于零的数的零指数幂都等于l.
负指数幂的概念:
a-p=(a≠0,p是正整数)
任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数.
也可表示为:(m≠0,n≠0,p为正整数)
单项式的乘法法则:
单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
单项式与多项式的乘法法则:
单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.
多项式与多项式的乘法法则:
多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.
单项式的除法法则:
单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.
多项式除以单项式的法则:
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.
2、乘法公式:
①平方差公式:(a+b)(a-b)=a2-b2
文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.
②完全平方公式:(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.
3、因式分解:
因式分解的定义.
把一个多项式化成几个整式的`乘积的形式,这种变形叫做把这个多项式因式分解.
掌握其定义应注意以下几点:
(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;
(2)因式分解必须是恒等变形;
(3)因式分解必须分解到每个因式都不能分解为止.
弄清因式分解与整式乘法的内在的关系.
因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.
二、熟练掌握因式分解的常用方法.
1、提公因式法
(1)掌握提公因式法的概念;
(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;
(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.
(4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.
2、公式法
运用公式法分解因式的实质是把整式中的乘法公式反过来使用;
常用的公式:
①平方差公式:a2-b2=(a+b)(a-b)
②完全平方公式:a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
初中整式教案篇2
一、教材分析
本节内容是人民出版社出版《义务课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。
二、设计思想
本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。
八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。
三、教学目标:
(一)知识技能目标:
1、理解同类项的含义,并能辨别同类项。
2、掌握合并同类项的方法,熟练的合并同类项。
3、掌握整式加减运算的方法,熟练进行运算。
(二)过程方法目标:
1、通过探究同类项定义、合并同类项的方法的活动,培养学生观察、归纳、探究的能力。
2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。
3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。
(三)情感价值目标:
1、通过交流协商、分组探究,培养学生合作交流的意识和敢于探索未知问题的'精神。
2、通过学习活动培养学生科学、严谨的学习态度。
四、教学重、难点:
合并同类项
五、教学关键:
同类项的概念
六、教学准备:
教师:
1、筛选数学题目,精心设置问题情境。
2、制作大小不等的两个长方体纸盒实物模型,并能展开。
3、设计多媒体教学课件。(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。)
学生:
1、复习有关单项式的概念、有理数四则运算及去括号的法则)
2、每小组制作大小不等的两个长方体纸盒模型。
初中整式教案篇3
一、教学目标。
1、知识与技能:理解单项式,单项式的系数,单项式的次数的概念,说出它们之间的区别和联系,并能指出一个单项式的系数和次数。
2、过程与方法:初步学会观察,对比,归纳的方法;发展学生的观察能力,思维能力及分析能力。
3、情感与价值观:培养学生合作交流意识,渗透数学知识源于生活,又为生活而服务的辩证思想。
二、教学设想。
本节属于概念教学课,力图体现概念形成的过程。本节课从生活中的实际问题引入,让学生经历由数字到用字母表示数家的过程,再提出问题,让学生列出相应关系式,学生探究式子的特点,从而引出单项式的概念。因此,课堂教学中,可以采用教师引导与学生参与相结合的方式,这样就可以促进师生互动,活跃课堂气氛,达到良好的教学效果。
三、教材分析。
本章属于《全日制义务数学课程标准(实验稿)》中的"数与代数"领域。整式是在以前已经学习了有理数运算的基础上引进的,本节内容由本章引言中的问题引出,在实际问题中逐步归纳单项式,单项式系数和单项式次数的概念,在了解概念的基础上准确指出一个单项式的系数及次数,内容衔接上循序浙进,让学生乐于接受。
四、重点,难点。
1、教学重点:单项式,单项式系数及单项式次数概念。
2、教学难点:区别单项式的系数和次数。
五、教学方法。
通过实际问题架设学习探索平台,教师采用点拨,引导的方法,启发学生经历主动思考,自主探索及合作交流的过程来达到对知识的"发现"和接受,进而完成知识内化,使书本知识成为自己的知识。
六、教学过程。
(一)创设情境,激趣导入。
问题1:举世瞩目的青藏铁路于2006年7月1日建成通车,是世界上海拨最高,路线最长的高原铁路。今天我们就来探讨这条铁路上有关路程的问题:
青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段,列车在冻土地段的速度是100千米/时,在非冻土地段的速度可以达到120千米/时,问:列车在冻土地段的行驶时,2小时能行驶多少千米3小时能行使多少千米t小时呢?
根据速度,时间和路程的关系:路程=速度__时间则
它2小时行驶的路程:100__2=200(千米),
它3小时行驶的路程:100__3=300(千米),
它t小时行驶的路程:100__t=100t(千米),
字母t表示时间,用含有字母t的式子100t表示路程。
问题2:用含有字母的式子填空。解答教科书第54面思考题。
(1)6a2,a3(2)2。5x(3)vt(4)-n由此引和新课。
(二)合作交流,探索新知。
1、单项式概念的探索。
(1)以上几个式子有什么共同特征:
6a2是6×a×a的乘积。
a3是a×a×a的乘积。
2.5x是2.5×x的乘积。
vt是v×t的乘积。
-n是-1×n的乘积。
归纳:都表示数与字母的积。
(2)引出单项式的概念:
①教学活动:
倾听、思考、分析、思考。
②师生互动:
列式解答、倾听、理解、思考、归纳。
倾听、理解概念、举例集体评议。
③学生活动:
从生活中的实际问题引入,激发了学生的学习兴趣,对新课起着过渡作用,由浅入深,对新知识的掌握起着循序渐进的作用。
培养学生的分析能力及表达,及时强调让学生对新知识掌握得更加完整。
培养学生的分析,思考及归纳能力,加深对概念的了解.
培养学生的评价能力,为概念的引出.
(3)让学生举出单项式的例子。
2、单项式系数和次数的探索。
问题1:以上单项式有什么结构特点。
由数字因数和字母因数两部分组成。
问题2:分别说出它们的数字因数和各字母的指数。
单项式中的数字因数,叫做单项式的系数。
一个单项式中,所有字母的指数的和,叫做这个单项式的次数。
交流练习:同桌之间一人举出单项式,另一人指出单项式的系数及次数。
教师巡视指导,请各别学生展示交流成果。
3,例题教学
教科书55页例1
学生独立解决后互相交流,最后教师归纳并在黑板上加以规范。
(三)练习巩固,熟练技能。
1、教科书第56页练习第1,2题。
2、下列各式:-x+3,6x,其中是单项式的是。
(四)总结反思,拓展延伸。
1、让学生谈谈本节课的收获。
2、通过今天的学习,你想进一步探究的问题是什么
七、板书设计。
2.1 整式
一、青藏铁路问题(略)。
二、单项式的概念。
单项式系数及次数的概念。
三、例题讲解
八、点评。
本教案的设计,符合学生的年龄特点,有利于学生探索重在让学生参与知识产生,发展,应用的全过程。让学生充分感知多项式及相关概念的形成过程,很发地发挥了学生的主体地位,但学生独立提出问题较少。
初中整式教案篇4
教学目标
1、 通过归纳、类比,经历单项式、多项式概念的发生过程。
2、 了解单项式、多项式、整式的概念。
3、 理解单项式的系数和次数的概念。
4、 理解多项式中项、项的系数、多项式的次数等概念。
了解整式在解决实际问题中的应用。
教学重点
单项式、多项式及其相关概念。
教学难点
单项式、多项式相关概念中的系数、次数的概念容易混淆,尤其是系数还包括符号,是本节教学的难点
教学方法
启发式 教学
用具
多媒体
教学过程
集体备课稿 个案补充
一、 新课引入
1.、x的-3倍是_________。
2. 正方形的边长是a,长方形的面积是正方形面积的2倍,那么长方形的面积是_______
3. 商店里卖出a台电脑,每台b元,商店共获利_______元。
4. 已知长方体的长和宽都为y,高为x,则长方体体积的- 倍为________.
二、 教师引入概念
单项式
思考-3x,2a2,ab, 这些代数式是怎样组成的?有什么共同特点?
教师总结:1、由数与字母或字母与字母相乘组成的代数式叫做单项式,单独一个数或一个字母也叫单项式。如:a,1,0等。
2、单项式中的数字因数叫做这个单项式的系数。
教学反馈1:完成p99----1,
多项式
由几个单项式相加组成的代数式叫做多项式
1) 在多项式中,每个单项式叫做多项式的项
2) 不含字母的项叫做常数项
3) 次数最高的项的次项叫做这个多项式的次数
4) 问:a2+3a-2的项分别有 ,常数项是 ,最高次项的次数为
5) a2+3a-2为二次三项式
教学反馈2:完成p98-----2. p99------3
整式
单项式、多项式统称为整式
教学反馈3:p98-----1. p99------2
三、 实际应用
例 一个花坛的形状如图44所示,它的两端是半径相等的'半圆。求
(1) 花坛的周长l (2)花坛的面积sa
解 (1)l=2a+2派r
(2)花坛的面积是一个长方形的面积一两个半圆的面积之和,即s=2ar+派r2
教学反馈4:1、有长为l的篱笆,利用它和房屋的一面墙围成如入形状的园子,园子的宽为t。
(1) 用关于l,t的代数式表示园子的面积;
(2) 当l=100m,t=30m时,求园子的面积。
2、设在排成每行7天的日历表中某个数是a,那么它下方第1个数是几?用代数式表示。这是几次多项式?若a表示7月16日,那么它下方第1个数表示几月几日?
四、 总结本节课的收获(学生回答)
五、 提高探究
已知n是自然数,多项式yn+1+3x3-2x是三次三项式,那么n可以是哪些数?
六、小结、布置作业
初中整式教案篇5
教材分析
1.这节的重点为:去括号。因此,本节所学的知识实际上就是对前面所学知识的一个巩固和深化,要突破这个重点,只有在掌握方法的前提下,通过一定的练习来掌握。
2.去括号是整式加减的一个重要内容,也是下一章一元一次方程的直接基础,也是今后继续学习整式的乘除、因式分解、方程,以及分式、函数等的重要基础。
学情分析
去括号法则是教材上的教学内容,学生学习时会经常出现错用法则的现象。实验表明:完全可以用乘法分配律取代去括号法则.这是由于:
(1)“去括号法则”,增加了记忆负担和出错的机会,容易出错;
(2)去括号的法则增加了解题长度,降低了学习效率;
(3)用乘法分配律去括号的学习是同化而非顺应,易于理解与掌握;
(4)用乘法分配律去括号是回归本质,返璞归真,且既可减少学习时间,又能提高运算的正确率。
教学目标
1.熟练掌握去括号时符号的变化规律;
2.能正确运用去括号进行合并同类项;
3.理解去括号的依据是乘法分配律。
教学重点和难点
重点
去括号时符号的变化规律。
难点
括号外的因数是负数时符号的变化规律。
教学过程
一、创设情景问题
青藏铁路线上,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的形式速度可以达到120千米/时。
请问:(3)在格尔木到拉萨路段,列车通过冻土地段比通过非冻土地段多用0.5小时,如果通过冻土地段需要t小时,则这段铁路的全长可以怎么样表示?冻土地段与非冻土地段相差多少千米?
解:这段铁路的全长为100t+120(t-0.5)(千米)
冻土地段与非冻土地段相差100t-120(t-0.5)(千米)。
提出问题,如何化简上面的两个式子?引出本节课的学习内容。
二、探索新知
1.回顾:
1你记得乘法分配率吗?怎么用字母来表示呢?
a(b+c)=ab+ac
2-(-2)=(-1)__(-2)=2+(-3)=(+1)__(-3)=-3
2.探究
计算(试着把括号去掉)
(1)13+(7-5)(2)13-(7-5)
类比数的运算,去掉下面式子的括号
(3)a+(b-c)(4)a-(b-c)
3.解决问题
100t+120(t-0.5)=100t-120(t-0.5)=
思考:
去掉括号前,括号内有几项、是什么符号?去括号后呢?
去括号的依据是什么?
三、知识点归纳
去括号法则:
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.
注意事项
(1)去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;
(2)括号内原有几项去掉括号后仍有几项.
四、例题精讲
例4化简下列各式:
(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).
五、巩固练习
课本p68练习第一题.
六、课堂小结
1.今天你收获了什么?
2.你觉得去括号时,应特别注意什么?
七、布置作业
课本p71习题2.2第2题
初中整式教案篇6
教学目标
①经历探索整式除法运算法则的过程,会进行简单的整式除法运算(只要求单项式除以单项式,并且结果都是整式),培养学生独立思考、集体协作的能力.
②理解整式除法的算理,发展有条理的思考及表达能力.
教学重点与难点
重点:整式除法的运算法则及其运用.
难点:整式除法的运算法则的推导和理解,尤其是单项式除以单项式的运算法则.
教学准备
卡片及多媒体课件.
教学设计
情境引入
教科书第161页问题:木星的质量约为1.90×1024吨,地球的质量约为5.98×1021吨,你知道木星的质量约为地球质量的多少倍吗?
重点研究算式(1.90×1024)÷(5.98×1021)怎样进行计算,目的是给出下面两个单项式相除的模型.
注:教科书从实际问题引入单项式的除法运算,学生在探索这个问题的过程中,将自然地体会到学习单项式的除法运算的必要性,了解数学与现实世界的联系,同时再次经历感受较大数据的过程.
探究新知
(1)计算(1.90×1024)÷(5.98×1021),说说你计算的'根据是什么?
(2)你能利用(1)中的方法计算下列各式吗?
8a3÷2a; 6x3y÷3xy; 12a3b2x3÷3ab2.
(3)你能根据(2)说说单项式除以单项式的运算法则吗?
注:教师可以鼓励学生自己发现系数、同底数幂的底数和指数发生的变化,并运用自己的语言进行描述.
单项式的除法法则的推导,应按从具体到一般的步骤进行.探究活动的安排,是使学生通过对具体的特例的计算,归纳出单项式的除法运算性质,并能运用乘除互逆的关系加以说明,也可类比分数的约分进行.在这些活动过程中,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步发展.重视算理算法的渗透是新课标所强调的.
归纳法则
单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.
注:通过总结法则,培养学生的概括能力,养成用数学语言表达自己想法的数学学习习惯.
应用新知
例2计算:
(1)28x4y2÷7x3y;
(2)-5a5b3c÷15a4b.
首先指明28x4y2与7x3y分别是被除式与除式,在这儿省去了括号.对本例可以采用学生口述,教师板书的形式完成。口述和板书都应注意展示法则的应用,计算过程要详尽,使学生尽快熟悉法则.
注:单项式除以单项式,既要对系数进行运算,又要对相同字母进行指数运算,同时对只在一个单项式里含有的幂要加以注意,这些对刚刚接触整式除法的学生来讲,难免会出现照看不全的情况,所以更应督促学生细心解答问题.
巩固新知
教科书第162页练习1及练习2.
学生自己尝试完成计算题,同桌交流.
注:在独立解题和同伴的相互交流过程中让学生自己去体会法则、掌握法则,印象更为深刻,也有助于培养学生良好的思维习惯和主动参与学习的习惯.
作业
1.必做题:教科书第164页习题15.3第1题;第2题.
2.选做题:教科书第164页习题15.3第8题
初中整式教案6篇相关文章:
★ 初中教学教案5篇