六年级人教版数学教案优秀8篇

时间:
Gourmand
分享
下载本文

优质的教案能够为教师提供清晰的教学思路,增强课堂的组织性,教案为教师提供了探索不同教学方式的机会,促进专业成长与发展,以下是汇报范文网小编精心为您推荐的六年级人教版数学教案优秀8篇,供大家参考。

六年级人教版数学教案优秀8篇

六年级人教版数学教案篇1

教学内容:

成数(课本第9页例2)

教学目标:

1、结合具体事物,经历认识成数,解答有关成数的实际问题的过程。。

2、对成数问题有好奇心,获得运用已有知识解决问题的成功体验。

教学重点:

理解成数的意义。

教学难点:

解决解答有关成数的实际问题。

教学过程:

一、复习

1、填空

①四折是十分之( ),改写成百分数是( )。

②六折是十分之( ),改写成百分数是( )。

③七五折是十分之( ),改写成百分数是( )。

2、商店里花了56元钱买了一条牛仔裤,因为那儿的'牛仔裤正在打七折销售,这条牛仔裤原价多少元?

二、创设情境,导入新课

同学们有听农民们说:今年我家的稻谷比去年增产二成,我家的桂皮晒干后只有五成等吗?他们说的是什么意思呢?原来商业上与百分数有关的术语是折扣,而农业上与百分数有关的术语就是成数。渗透环保

三、探究体验

(一)成数表示一个数是另一个数的十分之几,通称几成。例如一成就是十分之一,改写成百分数就是10%。

1、让学生尝试把二成及三成五改写成百分数。

2、让学生说说除了农业上使用成数,还有哪些行业是使用了成数的知识。

3、练习:将下列成数改写成百分数。

二成=( )%; 四成五=( )%; 七成二=( )%。

(二)教学例2

1、出示例题,某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?

2、让学生读题,分析题意,今年比去年节电二成五怎么理解?是以哪个量为单位1?

3、学生尝试独立分析问题,解决问题,教师巡堂了解情况,指导个别学习有困难的学生。

4、理解节电二成五就是比去年节省了百分之二十五的意思。从而根据求一个数的百分之几是多少的解法列出算式和解答。

350(1-25%)=262.5(万千瓦时)

或者引导学生列出

350-35025%=262.5(万千瓦时)

四、巩固练习

1、三成=( )%; 五成六=( )%; 八成三=( )%;

2、第9页做一做

3、解决问题

(1)某乡去年的水稻产量是1500吨,今年因为受到天气灾害的影响水稻产量只有去年的八成五,今年的水稻产量是多少吨?

(2)鼎湖山20xx年累计旅游人次是18万人次,20xx年累计旅游人次比20xx年增加一成五,20xx年累计旅游人次是多少?(出外玩要做好垃圾分类)

(3)我校20xx年的在校生人数有820人,比20xx年在校生人数减少了二成,我校20xx年的在校生人数是多少?

(4)某鞋厂20xx年的年产量为30万双,20xx年年产量比20xx年增加了一成六,20xx年年产量又比20xx年增加一成,这个鞋厂20xx年的年产量是多少万双?

五、课堂总结

这节课你收获了什么?

六年级人教版数学教案篇2

教学内容:

比较正数和负数的大小。

教学目的:

1、借助数轴初步学会比较正数、0和负数之间的大小。

2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

教学重、难点:负数与负数的比较。

教学过程:

一、复习:

1、读数,指出哪些是正数,哪些是负数?

-8 5.6 +0.9 - + 0 -82

2、如果+20%表示增加20%,那么-6%表示 。

二、新授:

(一)教学例3:

1、怎样在数轴上表示数?(1、2、3、4、5、6、7)

2、出示例3:

(1)提问你能在一条直线上表示他们运动后的情况吗?

(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

(4)学生回答,教师在相应点的.下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

(6)引导学生观察:

a、从0起往右依次是?从0起往左依次是?你发现什么规律?

b、在数轴上除可以表示整数外,还可以表示分数和小数。请学生在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?

(7)练习:做一做的第1、2题。

(二)教学例4:

1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

2、学生交流比较的方法。

3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”

5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

6、总结:负数比0小,所有的负数都在0的左边,也就是负数都比0小,而正数比0大,负数比正数小。

7、练习:做一做第3题。

三、巩固练习

1、练习一第4、5题。

2、练习一第6题。

3、某日傍晚,黄山的气温由上午的零上2摄氏度下降7摄氏度,这天傍晚黄山的气温是 摄氏度。

四、全课总结

(1)在数轴上,从左到右的顺序就是数从小到大的顺序。

(2)负数比0小,正数比0大,负数比正数小。

第二课教学反思:

许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。

例3——两个不同层面的拓展:

1、在数轴上表示数要求的拓展。

数轴除可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和—1.5绝对值相等。

同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。

2、渗透负数加减法

教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决1;2+1;(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。

例4——薄书读厚、厚书读薄。

薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)

例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘三种不同类型,一一请学生介绍比较方法,将薄书读厚。

将厚书读薄——无论哪种类型,比较方法万变不离其宗。

六年级人教版数学教案篇3

教学目标:

1.使学生能结合方格纸用两个数据来确定位置,能依据给定的数据在方格纸上确定位置。

2.通过学习活动,增强学生运用所学知识解决实际问题的能力,提高应用意识。

教学重点:

在方格纸上用数对确定点的位置

教学难点:

利用方格纸正确表示列与行。

教学准备:

教师准备:投影机。

学生准备:方格纸

教学过程

一、复习巩固

标出下列班上同学的位置(图略)

{借助教师操作台上的学生座位图,迅速将实际的具体情境数学化}

二、新知探究

(一)教学例2

1.我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。

2.依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)

(在教学的过程中,教师要特别强调0列、0行,并指导学生正确找出。)

3.同桌讨论说出其他场馆所在的位置,并指名回答。

4.学生根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”的位置。(投影讲评)

{充分利用学生已有的生活经验和知识,鼓励学生自主探索、合作交流。在教学时应充分利用这些经验和知识为学生提供探究的空间,让学生通过观察、分析、独立思考、合作交流等方式,将用生活经验描述位置上升为用数学方法确定位置,发展数学思考,培养空间观念。}(二)、课堂提高

练习一第6题

(1)独立写出图上各顶点的位置。

(2)顶点a向右平移5个单位,位置在哪里?哪个数据发生了改变?点a再向上平移5个单位,位置在哪里?哪个数据也发生了改变?

(3)照点a的方法平移点b和点c,得出平移后完整的三角形。

(4)观察平移前后的图形,说说你发现了什么?小组内相互说说。

(图形不变,右移时列也就是第一个数据发生改变,上移时行也就是第二个数据发生改变)

{。让学生看到在平面上用数对表示点的位置的方法,架起了数与形之间的桥梁,加强了知识间的相互联系。}

三、当堂测评

练习一第4题

学生独立完成,然后同学之间互相检验交流,最后,教师再展示学生的.作品,学生评价。

练习一第5题

(1)学生自己在方格纸上画一个简单的多边形。各顶点用两个数据表示。

(2)同桌互相合作,一人描述,一人画图。

{继续渗透数形结合的思想.}

四、课堂自我评价

这节课你觉得自己表现得怎样?哪些方面还需要继续努力?

五、设计意图:

本节知识,我充分利用学生已有的生活经验和知识,从学生熟悉的座位顺序出发,让学生在口述“第几组几个”的练习过程中,潜移默化地建立起“第几列第几行”的概念,让学生从习惯上培养起先说“列”后说“行”的习惯。然后再过度到用网格图来表示位置,让学生懂得从网格坐标上找到相应的位置。这样由直观到抽象、由易到难,符合孩子的学习特点。

六年级人教版数学教案篇4

教学目标:

1、理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。

2、弄清比同除法、分数的关第,明确比的后项不能为0的道理,同时懂得事物之间是相互联系的。

3、通过主动发现的小组合作学习,激发学合作意识,培养比较、分析、抽象、概括和自主学习的能力。

4、养成认真观察,积极思考的良好学习习惯。

教学重点:

理解和运用比的意义及比与除法、分数的联系。

教学难点:

理解比的意义。

教学准备:

课件、实物投影、表格、四幅比例不同的画。

教学过程:

一、创设情境,激发兴趣

出示四幅画,(a、头身一样长 b、头:身=2:3 c、头:身=1:5 d、头:身=1:6)选出你认为最美的人物速写。

师:早在一千多年前,德国心理学家费希纳也做过这样一个类似的实验,而评选的结果与我们刚刚的评选竟惊人地不谋而合。那这些人物画为什么会被大家公认为是最美的,其中的奥秘到底又在哪里呢?就让我们带着这些问题,开始今天的学习。

师:根据经验,你觉得一幅人物速写美不美,主要跟它的什么有关?

师:确实,人物画的美与所画的头与身之间的关系有密切的联系。想想怎样比较它们之间的关系?

二、探索规律,揭示意义

(一)出示:

1、一个镜框长5分米,宽3分米。长是宽的几倍?

还可以怎样表示长与宽的关系?

像这种表示长与宽的关系有时也说成长与宽的比是5比3,

宽与长的比是3比5。这两个长度的比属于同类的量相比。

2、一辆汽车2小时行驶90千米。

已知什么?可以求什么?

路程与时间两个不同类的量,表示它们的关系时可以用速度来表示,也可以说成:汽车所行路程与时间的比是90比2。

三、自主学习,合作交流。

(1)看书自学,小组讨论交流:通过刚才的学习,我们理解了比的意义,在课本的46~47页还涉及到一些关于比的其他知识,你们想自己研究、探索吗?那么就请你们先独立自学,自学完了在四人小组里你学会了什么?还有什么疑问?开始吧!

(2)汇报。(允许学生无序汇报,注意让学生举例说明,并即时练习)

①写法。

我学会了比的写法,5比3记作5∶3。(让学生板演)

问:这个∶叫做什么呢?谁愿意给它起个名字?(强调:写∶应该注意上下对齐,点要圆一点,它不同于冒号。)那么4比3、110比12.51又记作什么?(指名板演,其他同学写在练习本上)3∶4 4∶3 110∶12.91又怎样读呢?

思考:刚才大家学会了用∶的形式来写出两个数的比,除了这种形式,还可以写成什么形式呢?(指名板演)读作什么?还可以读作二分之三吗?为什么?(把3∶4改写成分数形式的比,并齐读。)

②各部分名称。(结合板书)

③比值。

我学会了什么叫做比值。(比的前项除以后项所得的商叫做比值)

问:那么怎样求比值呢?(前项除以后项的商)

练习:求出下面各比的比值。3∶4 0.7∶0.35 8∶4

0.2∶

让学生观察求比值的过程,想想比与除法有什么联系?

(四)探讨比与分数、除法的关系、区别

根据分数与除法的联系想想比与分数有什么联系?

小组合作,让学生拿出所发表格进行填写。

展示学生整理的内容:

联 系 区 别

比 前项 比号(:) 后项 比值 两数之间的关系

除法 被除数 除号() 除数 商 一个算式

分数 分子 分数线() 分母 分数值 两数之间的关系或具体的量

用字母a和b分别表示两数,想想比、除法、分数的关系可以怎样表示呢? (a:b=ab=(b0))

比也可以写成分数形式:如3:5也可写成。。。。

?1】第一层练习

1、填空:

(1)小华家养了12只鸡,9只鸭。

鸡和鸭只数的比是 ( ),比值是( )。

鸭和鸡只数的比是 ( ),比值是( )

(2)买3千克苹果用了7.5元。买苹果的总价和数量的比是( ),比值是( )。

2、把下面的比改写成分数形式、

25∶100 21∶18

这里注意:改写成分数形式后读法还是和比的读法一样,读做谁比谁。

并且不能约分,因为约分后的结果是比值,不是比。这里要区分

3、选择

买4支钢笔是12元,钢笔总价和数量的比是( )

a、4∶12 b、12∶4 c、12/4

为什么b和c的答案都对呢?(因为比还可以写成分数的形式,但是读还是读做几比几。)

4、判断:

(1)小明今年10岁,爸爸37岁,父亲和儿子的年龄比是10∶37。

(2)一项工程,甲单独做要7天完成,乙单独做要5天完成,甲乙两人的工作效率比是7∶5。

(3)大卡车的载重量是6吨,小卡车的载重量是3吨,大小卡车载重量的比是2。

?2】第二层练习

写出比值是2的比。

?3】随机练习(看时间情况定)

陈俊明今年12岁,是六年(4)班学生,该班共有48个学生,小明爸爸今年38岁,在科技公司上班,每月工资5000元,年薪60000元,小明妈妈每月工资800元,年薪9600元,她所在单位有职工24人。

要求:根据题目中提供的条件,寻找合适的量,说出两个数之间的比。

五、课堂总结,拓展延伸。

1、这节课学习了什么知识?你有什么收获?

2、你能说出一些生活中的关于比的例子吗?(学生举例)

师:同学们,其实,比在我们的日常工作和生活中,有着广泛的应用。

(1)松下高清晰数字彩电有4:3的宽屏幕,与未来标准接轨,超 值影院享受。

(2)雀巢咖啡是由白砂糖和速溶咖啡按2:5混合而成的,香气浓郁,味道好极了!

(3)在雅典奥运会上,共32次冉冉升起的五星红旗,它的宽和长的比是著名的黄金比 1:1.618.。

(4)人的脚长与身高的比大约是:1︰7;拳头翻滚一周,它的长度与脚的比大约是:1︰1知道这些有趣的比很有用,如果你到商店买袜子,只要将袜底在你的拳头上绕一周,就会知道这双袜子是否适合你穿。

课后,希望同学们能继续调查比在生活中的应用,并且把你的发现写成一篇数学日记。

六年级人教版数学教案篇5

教学目标

1.理解本金、利息和利率的含义,掌握利息的计算方法,会正确的计算存款利息。

2.使学生初步认识储蓄的含义,感受到储蓄给人们生活带来的方便及益处。

3.使学生感受数学在生活中的作用,培养学生初步的理财意识和实践能力。

教学重难点

1.利息和本息和的计算。

2.利息和本息和的计算。

教学过程

1.谈话。

大家的压岁钱是怎么管理的?为什么把钱存入银行?

2.导入。

把钱存入银行,会获取一部分利息,怎么计算利息呢?这就是我们今天要学习的内容。

1.探究有关储蓄的知识。

(1)储蓄的好处。

(2)储蓄的方式。

(3)什么是本金、利息、利率以及三者之间的.关系?

2.深入理解有关储蓄的知识。

课件出示:小红20xx年9月1日把100元钱存入银行,整存整取一年,到20xx年9月1日,小红不仅可以取回存入的100元,还可以得到银行多付给的3元,共103元。

引导学生找出题中的本金和利息。

3.探究利息、利息与本金和的计算方法。

(1)分析题意,引导学生探究利息的计算方法。

(2)组织学生尝试解题,交流汇报。

巩固实践爸爸妈妈给贝贝存了2万元存款,存期为三年,年利率为5.40%,到期一次支取,支取时凭非义务的学生身份证明,可以免征储蓄存款利息所得税。

(1)贝贝到期可以拿到多少钱?

(2)如果是普通三年期存款,应缴纳利息税多元?

板书设计

利率

本金:存入银行的钱叫做本金。

利息:取款时银行多付的钱叫做利息。

利率:利息与本金的百分比叫做利率。

利息=本金×利率×存期

方法一:方法二:

5000×3.75%×2=375(元)5000×(1+3.75%×2)

5000+375=5375(元)=5000×(1+0.075)

=5000×1.075

=5375(元)

六年级人教版数学教案篇6

教学内容:

第25~26页,例2、例3及练习四的第3~8题。

教学目的:

1、过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。

2、已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。

3、过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。

教学重点:

掌握圆锥体积的计算公式。

教学难点:

正确探索出圆锥体积和圆柱体积之间的关系

教具准备:

每生准备一组等底等高的圆柱和圆锥模具,大米,水,沙子等

教学过程:

一、复习

1、圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和顶点)

2、圆柱体积的计算公式是什么?

指名学生回答,并板书公式:“圆柱的体积=底面积×高”。

二、新课

1、教学圆锥体积的计算公式。

(1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的

(2)圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)

(3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的`,下面我们通过实验,看看它们之间的体积有什么关系?”

组织学生实验分组合作学习

(4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?

(教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。)

(5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的)

学生叙述实验过程并总结结论,得出计算公式

板书:圆锥的体积= 1/3×圆柱的体积=1/3 ×底面积×高,

字母公式:v= 1/3sh

2、教学练习四第3题

(1)这道题已知什么?求什么?已知圆锥的底面积和高应该怎样计算?

(2)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。

3、巩固练习:完成练习四第4题。

三、教学

(1)出示例3

已知近似于圆锥形的沙堆的底面直径和高,求这堆沙堆的的体积。

(2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

(3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)

(4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上.做完后集体订正。(注意学生最后得数的取舍方法是否正确)

四、巩固练习

1、做练习四的第7题。

学生先独立判断这三句话是否正确,然后全般核对评讲。

2、做练习四的第8题。

(1)引导学生学生思考回答以下问题

①这道题已知什么?求什么?

②求圆锥的体积必须知道什么?

③求出这堆煤的体积后,应该怎样计算这堆煤的重量?

(2)让学生做在练习本上,教师巡视,做完后集体订正。

3、做练习四的第6题。

(1)指名学生先后回答下面问题

①圆柱的侧面积等于多少?

②圆柱的表面积的含义是什么?怎样计算?

③圆柱体积的计算公式是什么?

④圆锥的体积公式是什么?

(2)学生把计算结果填写在教科书第28页的表格中,做完后集体订正。

五、课堂练习

1、填空

(1)圆锥体体积的计算公式( )

(2)等底等高的圆锥体是圆柱体体积的( ),圆柱体是圆锥体体积的()。

(3)等底等高的圆锥体体积是3立方厘米,圆柱体的体积是()。

(4)体积和底面积相等的圆柱与圆锥,圆柱高5厘米,圆锥高()。

(5)体积和高相等的圆柱与圆锥,圆锥底面积15平方厘米,圆柱底面积是()。

(6)等底等高的圆柱和圆锥,圆柱比圆锥的体积大()。

2、判断

(1)圆柱体的体积一定比圆锥体的体积大.

(2)圆锥的体积等于和它等底等高的圆柱体的1/3.

(3)圆锥体、正方体、长方体的体积都等于底面积×高。

(4)圆锥的高是圆柱高的3倍,且底面积相等,那么他们的体积相等。

3、补充习题

(1)一堆煤成圆锥形,底面半径是1.5米,高是1.1米。这堆煤的体积是多少?如果每立方米的煤重约1.4吨,这堆煤有多少吨?

(2)一个圆锥形沙堆,底面直径是28.26平方米,高是2.5米用这堆沙在10米宽的公路上铺2厘米厚的路面,能铺多少米?

(3)一堆圆锥形的煤体积是12立方米,底面积是6平方米,高是多少?

(4)在一个底面半径是10cm的圆柱形水桶中装有水,把一个底面半径为5cm的圆锥形铁锤浸没在水中,水面上升了1cm,试问铁锤的高是多少?

(5)等底等高的圆柱和圆锥,圆柱的体积比圆锥的体积多24立方分米,圆柱的体积是多少立方分米?

六、总结

这节课学习了哪些内容?你是如何准确地记住圆锥的体积公式的?

教学反思:

从本节课的教学任务来看,主要是构建“圆锥的体积是等底等高的圆柱的体积的三分之一”这一概念的认识,而这一认识的形成,靠文字和观摩演示都是苍白无力的,它需要学生发自内心的需要,全身心的体验,使学生在实验中对自己的实验过程和结论进行对比和反思,悟出等底等高的必要性,从而明确圆锥的体积是等底等高的圆柱的体积的三分之一”的具体含义。

六年级人教版数学教案篇7

教学内容:

人教版六年级下册第三单元p17-18内容及“做一做”。

教学目标:

1.认识圆柱,掌握圆柱各部分的名称及特点。

2.能建立圆柱的几何模型,体验从实物中抽象出图形的学习方法。

3.使学生经历操作、观察、比较和探索的过程,提高分析,推理和判断能力。

教学重点:理解、掌握圆柱的基本特征。

教学难点:发展空间观念,掌握圆柱的基本特征。

教学准备:长方体、正方体、圆柱、三角尺、直尺、学习单

教学过程:

一、引“新”明标--引入新课,明确目标

1.创设情境

教师出示粉笔盒,问:“这是什么图形”?唤起对学生已有经验的回顾,为新知识的学习作铺垫。

2.揭题明标

揭示课题后,启发学生思考回答:关于圆柱,你想了解它的哪些知识?(学生自由回答,师将问题整理后抓住关键词读、写、说并板书)

二、探“新”依标--依标导学,探究新知

(一)自学--发现圆柱。

1.找一找:生活中你还在哪儿见过圆柱?

2.展一展:实物展示生活中的圆柱:保温杯、唇膏、电池、圆的笔筒。

3.看一看、想一想:

认真看课本p17,重点观察圆柱由哪些部分组成,要边看,边思考:

①这个圆柱形的物体,它由哪几部分组成的,这些部分有什么特征?

②观察圆柱的上、下两个平面,分别是什么形状?

③你觉得,两个底面有什么特征?

4.说一说

让学生自说说自己的思考结果,验证圆柱的上、下底面是两个大小相等的圆。

5.读一读

圆柱是由3个面围成的,圆柱的上、下两个面叫做底面,圆柱周围的面(上下两个面除外)叫做侧面。圆柱的两个底面之间的距离叫做高。

(二)共学--小组合作,理解圆柱

1.剪一剪,量一量,议一议

拿出你制作的圆柱模型,四人小组讨论:

①圈:剪一剪你的圆柱模型。

②量一量:量圆柱上下两个底面的半径、直径;及身高不同大小圆柱的高。

③说:说一说你发现的圆柱两个底面有什么共同的特征?圆柱的周围是什么形状?圆柱的高矮和什么有关系?

2.展一展,评一评

讲解要求:

①你发现的圆柱上下两个面有什么共同的特征?

②圆柱周围的面(上下面底面除外)是什么形状?

③圆柱的高矮和什么有关系?

小结:圆柱是由3个面围成的,圆柱的上、下两个面叫做底面,圆柱周围的面(上下两个面除外)叫做侧面。圆柱的两个底面之间的距离叫做高。

4.探究拓展

把一张长方形的硬纸贴在木棒上,快速转动木棒,看看转出来的是什么形状?

小结:长方形硬纸围绕木棒快速转动,可以转成一个圆柱。

三、测“新”评标--达标检测,评价目标

1.课本第18页“做一做”第1题

(1)指出下面圆柱的底面、侧面和高

(2)圆柱有几个底面?是什么形状?

(3)圆柱有几个侧面,几条高?

2.课本第18页“做一做”第2题

(1)图一的旋转轴在哪里?

(2)图二的旋转轴在哪里?

(3)为什么同一个长方形会旋转不同的圆柱呢?

3.练习三第1题

根据你对圆柱的理解,你能准确地判断出下面的图形哪些是圆柱吗?想一想为什么其他图形不是圆柱?圆柱具有什么样的特征?

四、结“新”拓标--全堂总结,拓展延伸

在这节课中,你学会了什么知识,你有什么收获

板书设计:

圆柱

底面2个

侧面1个

高一样长

六年级人教版数学教案篇8

一、教学内容

比的应用的练习课。(教材第55~56页练习十二第3~7题)

二、教学目标

1.复习巩固按比分配问题的解题方法。

2.进一步培养学生应用知识解决实际问题的能力。

三、重点难点

重难点:会灵活运用按比分配问题的解题方法解决实际问题。

教学过程

一、基础练习

1.师:比的意义和基本性质是什么?(点名学生回答)

2.教材第55页练习十二第5、6题。

(学生独立完成,集体订正)

3.师:按比分配问题有几种解题方法?是什么?(同桌之间说一说)

引导学生回顾按比分配的两种解题方法。

二、指导练习

1.教学教材第55页练习十二第3题。

(1)组织学生观察图画,理解题意,了解信息。

(2)组织学生小组讨论,如何解决问题。

教师巡视,并引导学生理解每个橡皮艇上有1名救生员和7名游客,也就是救生员和游客的人数比是1∶7。

(3)交流后,学生独立完成,集体订正。

2.教学教材第55页练习十二第4题。

(1)学生读题,理解题意。

(2)师:已知总棵树和每班的人数,要求各班栽的棵数,应先求出什么?

引导学生明确应先求出各班的人数比,人数比等于棵数比,然后根据按比分配求出各班栽的棵数。

教师提示:两个数的按比分配问题的解题方法同样适用于三个及以上的数的比。

(3)学生独立完成,集体订正。

3.教学教材第56页练习十二第7题。

(1)学生读题看图,理解题意。

(2)师:西红柿的面积可直接用乘法求得,黄瓜和茄子的面积可以怎样求得?

组织小组交流讨论,学生可能有两种回答:

①先求出种黄瓜和茄子的总面积。再根据按比分配问题的解题方法解答。

②先求出黄瓜和茄子占总面积的比,然后用乘法直接根据按比分配分别求出黄瓜和茄子的面积。

(3)学生独立完成,点名学生回答,根据回答板书:

(方法一)西红柿:800×2/5=320(m2)

黄瓜和茄子:800-320=480(m2)

黄瓜:480×2/(2+1)=320(m2)

茄子:480×1/(2+1)=160(m2)

(方法二)西红柿:800×2/5=320(m2)

黄瓜占总面积:1-2/5×2/(2+1)=2/5

茄子占总面积:1-2/5×1/(2+1)=1/5

黄瓜:800×2/5=320(m2)

茄子:800×1/5=160(m2)

三、巩固练习

1.完成教材第56页“练习十二”第8题。(要求学生提出不同的问题并解答)

(答案不唯一)我和爸爸的年龄比:12∶38=6∶19;爸爸与妈妈的年工资比:36000∶(20xx×12)=3∶2。

2.完成教材第56页“练习十二”第9x题。(点名学生板演,其余独立计算,集体订正)

150 t∶60 t∶15 t=10∶4∶1

3.完成教材第56页“练习十二”第10x题。(学生独立完成,同桌订正)

水泥:20×2/(2+3+5)=4(t)

沙子:20×3/(2+3+5)=6(t)

石子:20×5/(2+3+5)=10(t)

4.完成教材第56页“练习十二”第11x题。(小组讨论解决方法并汇报)

120÷4=30(cm)

长:30×3/(3+2+1)=15(cm)

宽:30×2/(3+2+1)=10(cm)

高:30×1/(3+2+1)=5(cm)

四、课堂小结

你有哪些收获?还有什么不明白的地方?

板书设计

比的应用(练习课)

第7题:

(方法一)西红柿:800×2/5=320(m2)

黄瓜和茄子:800-320=480(m2)

黄瓜:480×2/(2+1)=320(m2)

茄子:480×1/(2+1)=160(m2)

(方法二)西红柿:800×2/5=320(m2)

黄瓜占总面积:1-2/5×2/(2+1)=2/5

茄子占总面积:1-2/5×1/(2+1)=1/5

黄瓜:800×2/5=320(m2)

茄子:800×1/5=160(m2)

答:西红柿的种植面积是320 m2,黄瓜的种植面积是320 m2,茄子的种植面积是160 m2。

教学反思

1.本次练习,总的来说学生都能熟练地进行列式计算,但他们还没有达到真正理解利用比的基本性质进行思考解题。究其原因,大概是和一些学生的惰性思维有关。一些学生总认为只要会做就行,没有必要去深究为什么,以至于当新型问题出现时,他们往往不知如何下手。为了改变这种思想,还需要在教学中多注意方法的引导和理解,让其熟练掌握一般方法,能够以不变应万变地去解题。

2.我的补充:

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

备课资料参考

典型例题准备

?例题】甲、乙两个仓库有很多货物,先从甲仓库运走80 t货物,甲仓库的.剩余货物与乙仓库货物的质量比为3∶2;再从乙仓库运走55t货物,乙仓库剩余货物的质量是甲仓库剩余货物的质量的1/4。甲、乙两个仓库原来共有货物多少吨?

分析:不变量:从甲仓库运走80吨货物,甲仓库剩余货物的质量不变。

前后变化的分率:

(1)原来乙仓库货物的质量是甲仓库剩余货物质量的2/3;

(2)从乙仓库运走55 t后,乙仓库剩余货物的质量是甲仓库剩余货物质量的1/4。

对应量:甲、乙两个仓库货物质量变化的分率差的对应量是55 t。

解答:甲仓库剩余的货物:55÷2/3-1/4=132(t)

甲、乙原来共有货物:132+80+132×2/3=300(t)

答:甲、乙两个仓库原来共有货物300 t。

解法归纳:解决此类比与分率前后变化的问题,关键是抓住不变量,找出已知量对应的分率,从而用除法解决问题。

相关知识阅读

公侯伯子男,五四三二一。

假有金五秤*,依率要分讫。

?注释】:1秤=15斤,5秤=75斤。

有公、侯、伯、子、男五等官员,想要根据官位高低来分75斤金子,按5∶4∶3∶2∶1的比分完。可以通过按比分配问题的知识求出每种官位分得金子的质量。

六年级人教版数学教案优秀8篇相关文章:

人教版八年级上册教案8篇

三年级数学上册人教版教案参考8篇

2024人教版三年级数学下册教案8篇

人教版小学三年级上册数学教案及教学反思8篇

2024人教版三年级数学下册教案参考8篇

人教版二年级上册语文教案8篇

一年级语文教案上册人教版教案通用8篇

人教版小学四年级上册数学教案及教学反思8篇

人教版一年级语文教案模板8篇

苏教版小学数学六年级教案8篇

六年级人教版数学教案优秀8篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
74503