人教数学六年级下册数学教案模板6篇

时间:
Cold-blooded
分享
下载本文

一份教案的制定使教师能够理清思路,反思教学中的关键环节,教案通常包括教学目标、内容、方法和评估方式等要素,汇报范文网小编今天就为您带来了人教数学六年级下册数学教案模板6篇,相信一定会对你有所帮助。

人教数学六年级下册数学教案模板6篇

人教数学六年级下册数学教案篇1

中原区汝河新区小学师芳

一、学习目标

(一)学习内容

?义务教科书数学》(人教版)六年级下册教材第70页例3。本例是“鸽巢原理”的具体应用,也是运用“鸽巢原理”进行逆向思维的一个典型例子。要解决这个问题,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”,这样就把“摸球问题”转化为“抽屉问题”。

(二)核心能力

在理解鸽巢原理的基础上,利用转化的思想,把新知转化为鸽巢问题,提高分析和推理的能力。

(三)学习目标

1.进一步理解“抽屉原理”,运用“抽屉原理”进行逆向思维,解决实际问题,体会转化思想。

2.经历运用“抽屉原理”解决问题的过程,体验观察猜想,实践操作的学习方法,提高分析和推理的能力。

(四)学习重点

引导学生把具体问题转化为“抽屉原理”。

(五)学习难点

找出“抽屉”有几个,再应用“抽屉原理”进行反向推理。

(六)配套资源

实施资源:《鸽巢原理》名师教学课件

二、学习设计

(一)课堂设计

1.情境导入

师:同学们,你们喜欢魔术吗?今天老师给你们表演一个怎么样?看,这是一副扑克牌,去掉两张王牌,还剩下52张,请同学们任意挑出5张。(让5名学生抽牌)好,见证奇迹的时刻到了!你们手里的牌至少有2张是同花色的。

师:神奇吧!你们想不想表演一个呢?

师:现在老师这里还是刚才这副牌,请你抽牌,至少抽多少张牌才能保证至少有2张牌的点数相同呢?

在学生抽的基础上揭示课题。教师:这节课我们学习利用“鸽巢原理”解决生活中的'实际问题。(板书课题:鸽巢原理)

2.探究新知

(1)学习例3

①猜想

出示例3:盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,至少要摸出几个球?

预设:2个、3个、5个…

②验证

师:我们的猜想是不是正确呢?我们可以用画一画、写一写的方法来说明理由,并把验证的过程进行整理。

可以用表格进行整理,课件出示空白表格:

学生独立思考填表,小组交流。

全班汇报。

汇报时,指名按猜测的不同情况逐一验证,说明理由,看看解决这个问题是否有规律可循。

课件汇总,思考:从这里你能发现什么?

教师:通过验证,说说你们得出什么结论。

小结:盒子里有同样大小的红球和蓝球各4个。想要摸出的球一定有2个同色的,最少要摸3个球。

③小结

师:为什么球的个数一定要比抽屉数多?而且是多1呢?

预设:球有两种颜色,就是两个抽屉,从最不利的情况考虑摸2个球都不同色,就必须多摸一个,所以球一定要比抽屉数多1。其实摸4个球、5个球或者更多球,都能保证一定有2个球同色,但问题中要求摸的球数必须“至少”,所以摸3个球就够了。

师:说得好!运用学过的知识、逆推的方法说明了“只要摸出的球比球的颜色种数至少多1,就能保证有2个球同色”。这一结论是正确的。

板书:只要摸出的球比球的颜色种数至少多1,就能保证有2个球同色。或者说只要物体数比抽屉数至少多1,就能保证有一个抽屉至少放2个物体。

(2)引导学生把具体问题转化成“抽屉原理”。

师:生活中像这样的例子很多,我们不能总是猜测或动手试验,能不能把这道题与前面讲的“抽屉原理”联系起来思考呢?

思考:①摸球问题与“抽屉原理”有怎样的联系?

②应该把什么看成“抽屉”?有几个“抽屉”?要分别放的东西是什么?

学生讨论,汇报结果,教师讲评:因为有红、蓝两种颜色的球,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”。这样把“摸球问题”转化成“抽屉问题”,即“只要分的物体比抽屉多1,就能保证有一个抽屉至少有2个同色球”。

从最特殊的情况想起,假设两种颜色的球各拿了1个,也就是在两个抽屉里各拿了1个球,不管从哪个抽屉里再拿1个球,都有2个球是同色的。假设至少摸a个球,即a÷2=1……b,当b=1时,a就最小。所以一次至少应拿出1×2+1=3个球,就能保证有2个球同色。

结论:要保证摸出的球有两个同色,摸出的球数至少要比抽屉数多1。

3.巩固练习

(1)完成教材第70页“做一做”第1题。

(2)完成教材第70页“做一做”第2题。

4.课堂总结

师:这节课你学到了什么知识?谈谈你的收获和体验。

(三)课时作业

1.有黑色、白色、蓝色、红色手套各10只(不分左、右手),至少要拿出多少只(拿的时候不看颜色),才能在拿出的手套中,一定有两只不同颜色的手套?

答案:5只。

解析:4个颜色相当于4个抽屉,保证一定有两只不同的颜色,相当于分的物体个数比抽屉多1。【考查目标1、2】

2.一个鱼缸里有很多条鱼,共有5个品种。至少捞出多少条鱼,才能保证有4条鱼的品种相同?

答案:16条。

解析:5个品种相当于5个抽屉,保证有4条鱼品种相同,所放物品的个数是:5×3+1=16。【考查目标1、2】

人教数学六年级下册数学教案篇2

教学内容:

九年制义务小学数学第十二册p31~32页

教学目标:

1、通过学习和操作,认识圆柱的特征,能看懂圆柱的立体图,认识圆柱的高和圆柱侧面的展开图。

2、使学生形成圆柱的清晰表象,能根据圆柱的特征辨认圆柱体,认识圆柱的高,并能想象出圆柱侧面的展开图,培养学生的空间观念。

3、通过观察、操作、思考、讨论等活动,培养学生探索和解决问题的能力。

教学重点:理解掌握圆柱的特征和侧面展开图

教学难点:使学生弄清圆柱侧面展开得到一个长方形,这个长方形的长与圆柱底面周长,宽与圆柱的高之间的关系。

教学准备:

教师:课件,圆柱模型,卡纸做的长方形(长30 cm,宽20 cm),正方形。

学生:每生自带一个侧面包装好的圆柱形物体,剪刀。

教学过程:

一、创设情境,引入课题:

出示一个长方形小旗,快速旋转,让学生观察:看到了什么?(圆柱)

点出课题:圆柱的认识

对于圆柱一年级时我们已经有了初步认识,今天我们对它进行进一步的研究,相信将会对圆柱的认识更加深刻。

二、学习新知

1.认识圆柱的特征

(1)观察比较,建立表象

师:生活中的圆柱体很多,同学们都在那些地方见过圆柱?

课件展示老师搜集的圆柱图片,从实物中抽象出圆柱的立体图形。

(2)操作感知,归纳圆柱的特征

师:圆柱由那些面组成,这些面有什么特征?下面我们就利用准备好的圆柱通过看一看,摸一摸,滚一滚等方式对圆柱进行研究。重点解决以下问题:(课件显示)

圆柱由那些面组成?这些面有什么特征?

圆柱上下两个面大小相同吗?请你通过量一量,比一比等方式进行验证。

活动完成,汇报交流,教师及时板书,引导,得出圆柱的组成及特征。

2.认识圆柱的高

瞧,老师这还有两个圆柱呢。注意看,它们的底面相同,那它们的什么不同呢?那什么是圆柱的高呢?你认为圆柱的高指的是什么?谁能指一指?

课件讲解圆柱两个底面之间的距离叫做高。

让学生再指出几条高。体会高有无数条。并引导学生明白内部也有高。并用课件演示高一样长。课件出示:圆柱有无数条高,长度相等。

介绍生活中圆柱的高的不同叫法。

及时练习(课件展示)

这些问题孩子们轻而易举就解决了。看你们这么棒,老师手中的这个小圆柱也忍不住想请你们帮个忙了。它想知道自己身上的侧面包装纸有多大。该怎么办呢?

3.研究圆柱的侧面展开图

(1)思考:你想怎样剪呢?剪完展开后会是什么形状呢?想一想。

(2)小组合作探究:(课件出示探究要求)

(3)活动完成后小组汇报。(找两组同学上去边演示边讲解,师适时追问并板书)长方形的长就是圆柱的底面周长,宽就是圆柱的'高。

(4)师进行演示操作,并把侧面展开图贴在黑板上。

(5)课件演示侧面展开整个过程,让学生把整个过程理解消化。

(6)思考:圆柱的侧面展开图有没有可能是正方形呢?什么情况下是正方形呢?(用正方形纸演示)

小结:圆柱的侧面如果沿高剪开,侧面展开就是一个长方形或正方形,如果斜着剪开就是平行四边形,如果沿折线或取下剪开得到的将会是不规则图形。

这节课不知不觉中我们既认识了圆柱的特征,又研究了圆柱的侧面展开。同学们的学习效果如何呢?下面我们就来对自己作一检测。

三、巩固练习

1、概念辨析

2、辨一辨(哪个是圆柱的展开图)

3、创造圆柱

结束语:同学们,其实在刚才旋转创造圆柱的过程中,隐藏着一个奇妙的数学现象呢。想知道吗?(点动成线,线动成面,面动成体课件显示)有趣吗?在神奇的数学世界里,像这种有趣的现象还有许多,就等着你们去探索,去发现呢!

教学反思:

圆柱是一种常见的立体图形,在实际生活中,圆柱形的物体很多,学生对于圆柱都有初步认识。因此,在导入环节,我引导学生从平面图形联想到立体图形,感受“面动成体”从而引入新课。本课的重点是认识圆柱的特征。教学时我引导学生自己动手操作探究,研究圆柱的基本特征。

在探究的过程中,我努力为学生创设动手实践的机会,给学生足够的时间进行操作和思考,让学生获得丰富的活动经验。活动分两个层次进行:活动一研究圆柱特征,让学生通过看一看、摸一摸、滚一滚等方式进行研究,探索出圆柱的主要特征;活动二探究侧面展开图。通过这样的活动体验,让学生经历学习数学的过程,使学生在动手操作中充分感悟,形成表象,观察、比较、探索规律。

本节课属于空间与图形教学,它的另一个重要功能是培养学生的空间想象能力。因此我通过多个环节来发展学生的空间想象能力:

1、从长方形旋转得到圆柱引入新课。

2、在进行侧面展开之前,让学生先去想象展开后的形状,再去动手操作。

3、巩固练习创造圆柱中鼓励学生大胆去想象、创造圆柱。以此来培养学生的空间想象力,发展空间观念。

人教数学六年级下册数学教案篇3

教学目标:

1、使学生掌握圆柱体积公式,会用公式计算圆柱体积,能解决一些实际问题。

2、让学生经历观察、操作、讨论等数学活动过程,理解圆柱体积公式的推导过程,引导学生探讨问题,体验转化和极限的思想。

3、在图形的变换中,培养学生的迁移能力、逻辑思维能力,并进一步发展其空间观念,领悟学习数学的方法,激发学生兴趣,渗透事物是普遍联系的唯物辨证思想。

教学重点:

圆柱体积计算公式的推导过程并能正确应用。

教学难点:

借助教具演示,弄清圆柱与长方体的关系。

教具准备:

多媒体课件、长方体、圆柱形容器若干个;学生准备推导圆柱体积计算公式用学具。

教学设想:

? 圆柱的体积 》是学生在有了圆柱、圆和长方体的相关的基础上进行教学的。在知识与技能上,通过对圆柱的具体研究,理解圆柱的体积公式的推导过程,会计算圆柱的体积,在方法的选择上,抓住新旧知识的联系,通过想象、课件演示、实践操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识从生活中来到生活去的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探索。

教学过程:

一、创设情境,激疑引入

水是生命之源!节约用水是我们每个公民应尽的义务。前两天,老师家的水龙头出了问题,拧上阀门之后,还是不停的滴水,你们看,一刻钟就滴了这么多的水。

1、出示装了水的圆柱容器。

(1)启发思考:容器里面的`水形成了什么形状?(圆柱)你能知道这些水的体积?

(2)讨论后汇报

生1:用量筒或量杯直接量出它的体积;

生2:用秤称出水的重量,然后进一步知道体积;

生3:把它倒入长方体容器中,从里面量出长、宽和水面的高后再计算。

师:现在老师只有这些工具(圆柱形容器,长方形容器,半圆形容器和其他不规则容器),你怎么办?

生1:把水到入长方体容器中

生2:我们学过了长方体的体积计算,只要量出长、宽、高就行

[设计意图:通过本环节,给学生创设一个生活中的情境,提出问题,学习身边的数学,激起学生的学习兴趣;根据需要渗透圆柱体(新问题)和长方体(已知)的知识联系为所学内容作了铺垫的准备]

2、创设问题情境。

师:(课件显示)如果要求某些建筑中圆柱形柱子的体积,或是求压路机圆柱形大前轮的体积,能用同学们想出来的办法吗?

[设计意图:进一步从实际需要提出问题,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体积的问题的欲望]

师:今天,就让我们来研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)

二、经历体验,探究新知

1、回顾旧知,帮助迁移

(1)教师首先提出具体问题:圆柱体和我们以前学过的哪些几何图形有联系?

生1:圆柱的上下两个底面是圆形

生2:侧面展开是长方形

生3:说明圆柱和我们学过的圆和长方形有联系

师:请同学们想想圆柱的体积与什么有关?

生1:可能与它的大小有关

生2:不是吧,应该与它的高有关

[设计意图:温故而知新,既复习了旧知识又引出了新知识,学生在不知不觉中就学到了新知。]

(2)请大家回忆一下:在学习圆的面积时,我们是怎样将圆转化成已学过的图形,来推导出圆面积公式的。

配合学生回答演示课件。

[设计意图:通过想象,进一步发展学生的空间观念,由形到体;同时使学生感悟圆柱的体积与它的底面积和高的联系,通过圆面积推导过程的再现,为实现经验和方法的迁移作铺垫]

2、小组合作,探究新知

(1)启发猜想:我们要解决圆柱的体积的问题,可以怎么办?(引导学生说出圆柱可能转化成我们学过的长方体。并通过讨论得出:反圆柱的底面积分成许多相等的扇形,然后反圆柱切开,再拼起来,就转化近似的长方体了。)

(2)学生以小组为单位操作体验。

把圆柱的底面积分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。使学生进一步明确分的份数越多,形体中的 越接近 ,也就越接近长方体。同时演示一组动画(将圆柱底面等分成32份、64等份、128等份)

[设计意图:教师提出问题,学生带着问题大胆猜测、动手体验。这样学生在自主探索、体验、领悟的过程中成为了发现者和创造者。]

(3)学生小组汇报交流

近似的长方体的体积等于圆柱的体积, 近似的长方体的底面积等于圆柱的底面积,近似的长方体的高就是圆柱的高。根据长方体的体积等于底面积乘高,得出圆柱的体积也等于底面积乘高。

教师根据学生汇报,用教具进行演示。

(4)概括板书:根据圆柱与近似长方体的关系,推导公式

长方体的体积 = 底面积 高

圆柱的体积 = 底面积 高

用字母表示计算公式v= sh

[设计意图:首先通过学生的联想建立圆柱体和长方体的联系,初步建立转化的雏形,然后再通过实践操作,动画演示,验证了学生的发现,从学生的认识和发现中,围绕着圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识 公式)]

三、实践应用,巩固新知。

1、火眼金睛判对错。

(1)长方体、正方体、圆柱的体积都等于底面积乘高。( )

(2)圆柱的高越大,圆柱的体积就越大。( )

(3)如果两个圆柱的体积相等,则它们一定等底等高。( )

[设计意图:加深对刚学知识的分析和理解。]

2、计算下面各圆柱的体积。

(1)底面积是30平方厘米,高4厘米。

(2)底面周长是12。56米,高是2米。

(3)底面半径是2厘米,高10厘米。

[设计意图:让学生灵活运用公式进行计算。]

3、实践练习。

提供在创设情景中圆柱形接水容器的内底面直径和高。

这个圆柱形容器,内底面直径是10厘米,高12厘米,水面高度10厘米。

[设计意图:让学生领悟数学与现实生活的联系。]

4、课堂作业。

为了美化环境,阳光小区在楼前的空地上建了四个同样大小的圆柱形花坛。花坛的底面内直径为4米,高为0、6米,如果里面填土的高度是0、4米,这四个花坛共需要填土多少立方米?

[设计意图:使学生进一步感受到生活中处处有数学,同时培养学生的环保意识。]

四、反思回顾

师:通过本节课的学习,你有什么收获吗?

[设计意图:让不同层次的学生谈学习收获,可使每个学生都体验到成功的喜悦。这样,学生的收获不仅只有知识,还包括能力、方法、情感等,学生体验到学习的乐趣,增强了学好数学的信心。]

板书设计:

圆柱的体积

根据圆柱与近似长方体的关系,推导公式

长方体的体积 = 底面积 高

圆柱的体积 = 底面积 高

用字母表示计算公式v= sh

教学反思:

本节的教学从生活的实际创设情境,提出问题,让学生学习有用的数学,提高了学生运用数学知识解决身边问题的能力,从学数学的角度,注意了数学知识的特点。运用已有的知识(长方体体积的计算)经验(圆面积公式的推导)解决新的问题,在新旧知识的联系上,巧妙的利用想象、课件演示将圆和圆柱有机的联系到一起,使学生想象合理、联系有方。在探究新知中,通过想象和操作,让学生充分经历了知识的形成过程,为较抽象的理论概括提供了必要而有效的感性材料,加强了实践与知识的联系,并创造性的补充了一些与学生身边实际生活相联系的练习题,提高了学生的学习兴趣。

人教数学六年级下册数学教案篇4

教学目标

1、使学生初步认识对称图形,明白对称的含义,能找出对称图形的对称轴。

2、通过观察、思考和动手操作,培养学生多种能力,渗透美的。

教学重点

理解对称图形的概念及性质,会找对称轴。

教学难点

准确找全对称轴。

教学准备

1、教具:投影片、图片、剪刀、彩纸。

2、学具:蝴蝶几何图片、剪刀、白纸。

教学过程

(一)导入新课

你们看这些图形好看吗?观察这些图形有什么特点?

(图形的左边和右边相同。)

你能举出一些特点和上图一样的物体图形吗?(人体、昆虫、房屋、衣服……)

这些图形从哪儿可以分为左边和右边?请同学到前边来指一指。(指出中间的那条线。)

你怎么知道图形的左边和右边相同?(看出来的……)

还有别的办法吗?用手中蝴蝶图形动手试一试,互相讨论。(对折,图形左右两边完全合在一起,也就是完全重合。)

你能不能很快剪出一个图形,使左右两边能完全重合?可以讨论,也可以看一看其他同学是怎么剪的。(把纸对折起来,再剪。)

(二)讲授新课

1、对称图形的概念。

(1)对称图形和对称轴的定义。

以剪出的图形为例,贴在黑板上。

问:你们剪出的这些图形都有什么特点?

(沿着一条直线对折,两侧的图形能够完全重合。)

师:像这样的图形就是对称图形。(板书课题)

折痕所在的这条直线叫做对称轴(画在图上)。

问:现在谁能准确说出什么是对称图形?什么是对称轴。

板书:如果一个图形沿一条直线对折,两侧的图形能够完全重合,这个图形就是对称图形,折痕所在的这条直线叫做对称轴。

(2)加深理解概念。

以小组为单位,说一说,你刚才剪的图形叫做什么图形?为什么?画出自己剪的图形的对称轴。注意对称轴是一条直线,两端可以无限的延长。

(3)巩固概念。(投影)

①判断下面的图形是不是对称图形?为什么?用小棒摆出对称轴。

生:天安门、奖杯、汽车图是对称图形,金鱼图不是对称图形,无论怎样折,两侧都不能完全重合,因此也就没有对称轴。

②拿出从方格纸上剪下来的几何图形,折一折,看一看哪些是对称图形,画出它们的对称轴。个人完成后,按顺序摆放在桌子上,同桌互查,再指名按顺序说。

投影出示,折一折,说明是否是对称图形,并在xx里写明有几条对称轴。

生边回答老师边填在投影片上,并用小棒摆出对称轴。

回答:

1°任意三角形不是对称图形。

2°等腰三角形是对称图形,有一条对称轴。

3°任意梯形不是对称图形。

4°正方形是对称图形,有四条对称轴。(学生再折一折,老师示范。)

5°平行四边形不是对称图形。(再折一折,沿任何一条直线折都不重合。)

6°长方形是对称图形。有两条对称轴。(有四条对不对,折一折。)

7°圆是对称图形。有无数条对称轴。(在你那个圆上至少画出三条对称轴。)

8°等腰梯形是对称图形,有一条对称轴。

③小结。

问:决定一个图形是不是对称图形,具备什么条件?有几条对称轴由谁来决定?

④练一练

打开书第125页“做一做”,读题后做在书上,一名学生做在投影片上,投影订正。

第2个图和第4个图较难,要引导学生用对折的思想思考,关键找准第一条对称轴,其它就好找了。

2、对称图形的.性质。

(1)结合实例思考:对称图形在沿着对称轴折叠时,为什么两侧的图形能够完全重合?投影对称图形,边观察边思考边讨论。

(2)测量并归纳性质。

打开书第125页,看下半部分的对称图形,用尺子量一量图中的a,b,c,d点到对称轴的距离分别是多少厘米?(保留一位小数)

认真度量,结果填在书上,你发现什么?

投影订正。填后的结果:

a点到对称轴的距离是0。6厘米。

b点到对称轴的距离是1。2厘米。

c点到对称轴的距离是0。6厘米。

d点到对称轴的距离是1。2厘米。

问:根据测量的结果你发现什么?

(a,d两点及b,c两点都分别在对称轴两侧。a,d两点到对称轴的距离相等,都是0。6厘米;b,c两点到对称轴的距离也相等,都是1。2厘米。)

问:根据度量结果,你们能总结出对称图形的性质吗?

板书:在对称图形中,对称轴两侧相对的点到对称轴的距离相等。

(3)验证性质。

量一量五角星对称轴两侧到相对应的点到对称轴的距离是否相等。

看126页上面三幅图,同桌指着图形说出谁和谁是相对的点,相对点到对称轴的距离是多少。反过来,如果图形两侧相对应的两点到图形中线距离都相等,那么这个图形就是对称图形,中线就是对称轴。

(三)课堂总结

今天这节课我们学习了什么?什么样的图形叫对称图形?什么是对称轴?对称图形具有什么性质?为什么有很多建筑、生活用品都是对称图形?

(四)巩固练习

1、第127页1题,画出对称轴。

2、在你周围的物体上找出三个对称图形。

3、让学生把一张纸对折,用笔画出图形一半,然后剪出来,打开看一看是什么图形。也可按第127页第3题先画、再剪。

4、你能否应用对称图特点,剪出美丽的窗花或五角星。

人教数学六年级下册数学教案篇5

教学目标

1。在熟悉的生活情境中初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。

2。初步学会用负数表示一些日常生活中的实际问题。

3。能借助数轴初步理解正数、0和负数之间的关系。

重点难点

负数的意义和数轴的意义及画法。

教学指导

1。通过丰富多彩的生活情境,加深学生对负数的认识。

负数的出现,是生活中表示两种相反意义的量的需要。教学时,教师应通过丰富多彩的生活实例,特别是学生感兴趣的一些素材来唤起学生已有的生活经验,激发学生的学习兴趣,在具体情境中感受出现负数的必要性,并通过两种相反意义的量的对比,初步建立负数的概念。在引入负数以后,教师要鼓励学生举出生活中用正负数表示两种相反意义的量的实际例子,培养学生用数学的眼光观察生活,并通过大量的事例加深对负数的认识,感受数学在实际生活中的'广泛应用。

2。把握好教学要求。

对负数的教学要把握好要求,作为中学进一步学习有理数的过渡,小学阶段只要求学生初步认识负数,能在具体的情境中理解负数的意义,初步建立负数的概念。这里不出现正负数的数学定义,而是描述什么样的数是正数,什么样的数是负数,只要求学生能辨认正负数。关于数轴的认识,这里还没有出现严格的数学定义,而是描述性的定义,只是让学生借助已有的在直线上表示正数和0的经验,迁移类推到负数,能在数轴上表示出正数、0和负数所对应的点。

3。培养学生多角度观察问题,解决问题的能力。

教材创设了开放性的思维空间,在解决问题时应着眼于让学生自主地理解数学信息、寻找解题思路。教师要有意识地引导学生从不同角度寻找答案,对于学生有道理的阐述,教师要积极鼓励,激发学生求知的欲望,逐步增强学生学好数学的内驱力。

课时安排

共分3课时

教学内容

负数的初步认识

(1)(教材第2页例1)。

教学目标

结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。

重点难点体会负数的重要性。

教学准备多媒体课件。

情景导入

1。教师利用课件向学生展示教材第2页图。(有条件的可播放天气预报视频)

2。引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么0℃代表什么意思—3℃和3℃各代表什么意思)

3。引出课题并板书:负数的初步认识

(1) 新课讲授教学教材第2页例1。

(1)教师板书关键数据:0℃。

(2)教师讲解0℃的意思。0℃表示淡水开始结冰的温度。比0℃低的温度叫零下温度,通常在数字前加“—”(负号):如—3℃表示零下3摄氏度,读作负三摄氏度。比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上3摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。

(3)我们来看一下课本上的图,你知道北京的气温吗最高气温和最低气温都是多少呢随机点同学回答。

(4)刚刚同学回答得很对,读法也很正确。

(5)了解了北京的气温,下面我想请同学告诉我哈尔滨的气温,它与上海气温比较又怎样呢用手势告诉大家好吗

学生讨论合作,交流反馈。

(6)请同学们把图上其它各地的温度都写出来,并读一读。

(7)教师展示学生不同的表示方法。

(8)小结:通过刚才的学习,我们用“+”和“—”就能准确地表示零上温度和零下温度。

课堂作业

完成教材第4页的“做一做”第1题。组织学生独立完成,指名回答。

答案:—18℃温度低。

课堂小结

通过这节课的学习,你有什么收获

课后作业

完成练习册中本课时的练习。

人教数学六年级下册数学教案篇6

教学内容:

抽取游戏

教学目标:

1.使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。

2.体会数学与日常生活的联系,了解数学的价值,增强应用数学的'意识。

教学重点:

抽取问题。

教学难点:

理解抽取问题的基本原理。

教学过程:

一、教学例

盒子里有同样大小的红球和蓝球各4个。要想摸出的球一定有2个同色的,最少要摸出几个球?

1.猜一猜。

让学生想一想,猜一猜至少要摸出几个球。

2.实验活动。

(1) 一次摸出2个球,有几种情况?

结果:有可能摸出2个同色的球。

(2) 一次摸3个球,有几种情况?

结果:一定能摸出2个同色的球。

3.发现规律。

启发:摸出球的个数与颜色种数有什么关系?

学生不难发现:只要摸出的球比它们的颜色种数多1,就能保证有两个球同色。

二、做一做

第1题。

(1) 独立思考,判断正误。

(2) 同学交流,说明理由。

第2题。

(1) 说一说至少取几个,你怎么知道呢?

(2) 如果取4个,能保证取到两个颜色相同的球吗?为什么?

三、巩固练习

完成课文练习十二第1、3题。

人教数学六年级下册数学教案模板6篇相关文章:

六年级人教版数学教案7篇

六年级下册数学比例教案7篇

六年级人教版数学教案优秀8篇

六年级下册数学教案推荐7篇

小学六年级下册数学教案7篇

六年级数学下册教案参考5篇

人教一年级数学下册教学工作计划和总结5篇

六年级人教版数学教案精选5篇

六年级上册数学教案人教版教案8篇

冀教版六年级下册数学教案7篇

人教数学六年级下册数学教案模板6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
74980